咏柳皮肤病paper

A Deep Learning Based Framework for Diagnosing Multiple Skin Diseases in a Clinical Environment

  1. 摘要

    • a novel framework based on deep learning
      • backbone:eff-b4
      • output layer改成14个neuron
      • 每个layer group后面接一个auxiliary classifier
      • 用t-SNE对image feature可视化
    • a dataset that represents the real clinical environment
      • 13,603 专家标注的皮肤镜图片
      • 14类(扁平苔藓LP,红斑狼疮Rosa,疣VW,痤疮AV,瘢痕KAHS,湿疹和皮炎EAD,皮肤纤维瘤DF,脂溢性皮炎SD,脂溢性角化SK,黑素细胞痣MN,血管瘤Hem,银屑病Pso,暗红色斑PWS,基底细胞癌BCC)
    • 精度
      • overall acc:0.948
      • sensitivity:0.934
      • specificity:0.950
      • AUC:0.985
      • 与280个权威专家比赛:showed a comparable performance level in an 8-class diagnostic task
  2. 方法

    • previous work不太适用于实际场景:不符合亚洲人发病率
    • database
      • this paper调研了北大医学部皮肤病科的database
      • from October 2016 to April 2020
      • 由同一个技师使用皮肤镜,对着病灶从不同角度,连续拍摄多张
      • 2个5年以上经验的专家,结合患者病史,临床表现,皮肤镜特征打标签
      • 2人意见不同的时候通过咨询第3人达成一致
      • 劣质数据(图像质量、病史不完整、病灶在黏膜/指甲)被排除
      • 提取了14 most frequently encountered 常见病,13,603 clinical images from 2,538 patient cases
    • 网络
      • eff-b4,gradually unfroze
      • 7 auxiliary classifiers + 1 final classifiers,element-wise summation
      • 无语子
    • Comparison with dermatologists
      • 280个专家,
      • 用独立的测试集:consists of 200 cases with a clinical image and a dermoscopic image,8类(MN, SK, BCC, EAD, SD, Pso, VW and Rosa),每类25
      • 模型只用皮肤镜图片
      • 都是8选1
  3. 一些精度

    • metrics

    • dataset

    • 皮肤镜图像示例

    • 总体精度

    • 混淆矩阵