MuST谷歌多任务自训练

  • recollect

    [SimCLR]

    [MoCo]

Multi-Task Self-Training for Learning General Representations

  1. 动机

    • learning general feature representations
    • expect a single general model
      • 相比较于training specialized models for various tasks
      • harness from independent specialized teacher models
      • with a multi-task pseudo dataset
      • trained with multi-task learning
    • evalutate on 6 vision tasks
      • image recognition (classification, detection, segmentation)
      • 3D geometry estimation
  2. 论点

    • pretraining & transfer learning

      • transformer一般都是这个套路,BiT&ViT
      • pretraining
        • supervised / unsupervised
        • learn feature representations
      • transfer learning
        • on downstream tasks
        • the features may not necessarily be useful
        • 最典型的就是ImageNet pre-training并不能improve COCO segmentation,但是Objects365能够大幅提升
      • pretraining tasks必须要和downstream task align,learn specialized features,不然白费
    • learning general features

      • a model simultaneously do well on multiple tasks
      • NLP的bert是一个典型用多任务提升general ability的
      • CV比较难这样做是因为标签variety,没有这样的大型multi-task dataset
    • multi-task learning

      • shared backbone (如ResNet-FPN)
      • small task-specific heads
    • self-training

      • use a supervised model to generate pseudo labels on unlabeled data
      • then a student model is trained on the pseudo labeled data
      • 在各类任务上都proved涨点
      • 但是迄今为止都是focused on a single task
    • in this work

      • lack of large scale multi-task dataset的issue,通过self-training to fix,用pseudo label

      • specialized/general issue,通过多任务,训练目标就是六边形战士,absorb the knowledge of different tasks in the shared backbone

      • three steps

        • trains specialized teachers independently on labeled datasets (分类、分割、检测、深度估计)
        • the specialized teachers are then used to label a larger unlabeled dataset(ImageNet) to create a multi- task pseudo labeled dataset
        • train a student model with multi-task learning

      • MuST的特质

        • improve with more unlabeled data,数据越多general feature越好
        • can improve upon already strong checkpoints,在海量监督高精度模型基础上fine-tune,仍旧能在downstream tasks涨点
  3. 方法

    • Specialized Teacher Models

      • 4 teacher models
        • classification:train from scratch,ImageNet
        • detection:train from scratch,Object365
        • segmentation:train from scratch,COCO
        • depth estimation:fine-tuning from pre-trained checkpoint
      • pseudo labeling
        • unlabeled / partially labeled datasets
        • for detection:hard score threshold of 0.5
        • for segmentation:hard score threshold of 0.5
        • for classification:soft labels——probs distribution
        • for depth:直接用
    • Multi-Task Student Model

      • 模型结构

        • shared back
          • C5:for classification
          • feature pyramids {P3,P4,P5,P6,P7}:for detection
          • fused P2:for pixel-wise prediction,把feature pyramids rescale到level2然后sum
        • heads
          • classification head:ResNet design,GAP C5 + 线性层
          • object detection task:Mask R-CNN design,RPN是2 hidden convs,Fast R-CNN是4 hidden convs + 1 fc
          • pixel-wise prediction heads:3 hiddent convs + 1 linear conv head,分割和深度估计任务independent,不share heads
      • Teacher-student training

        • using the same architecture
        • same data augmentation
        • teacher和student的main difference就是dataset和labels
      • Learning From Multiple Teachers

        • every image has supervision for all tasks
        • labels may come from supervised or pseudo labels
        • 如果使用ImageNet数据集,classification就是真标签,det/seg/depth supervision则是伪标签
        • balance the loss contribution
          • 加权和,task-specific weights
          • for ImageNet,use $w_i = \frac{b_slr_{it}}{b_{it}lr_{s}}$
          • follow the scaling rule:lr和batch size成正比
          • except for depth loss
      • Cross Dataset Training

        • training across ImageNet, object365 and COCO
        • 有标签的就用原标签,没有的用伪标签,supervised labels and pseudo labels are treated equally,而不是分别采样和训练
        • balance the datasets:合在一起然后均匀采样
      • Transfer Learning

        • 得到general student model以后,fine-tune on 一系列downstream tasks
        • 这些downstream datasets与MuST model的训练数据都是not align的
        • 这个实验要证明的是supervised model(如teacher model)和self-supervised model(如用pseudo label训练出来的student model),在downstream tasks上迁移学习能performance是差不多的,【注意⚠️:如果迁移datasets前后align就不是这样了,pretrain显然会更好!!!】