和refineNet没有任何关系
RefineDet: Single-Shot Refinement Neural Network for Object Detectio
动机
- inherit the merits of both two-stage and one-stage:accuracy and efficiency
- single-shot
- multi-task
- refineDet
- anchor refinement module (ARM)
- object detection module (ODM)
- transfer connection block (TCB)
论点
- three advantages that two-stage superior than one-stage
- RPN:handle class imbalance
- two step regress:coarse to refine
- two stage feature:RPN任务和regression任务有各自的feature
- 模拟二阶段检测的RPN,把classifier任务中的大量阴性框先排掉,但不是以两个阶段的形式,而是multi-task并行
- 将一阶段检测的objectness和box regression任务解耦,两个任务通过transfer block连接
- ARM
- remove negative anchors to reduce search space for the classifier
- coarsely adjust the locations and sizes of anchors to provide better initialization for regression
- ODM
- further improve the regression
- predict multi labels
TCB
- transfer the features in the ARM to handle the more challenging tasks in the ODM
- three advantages that two-stage superior than one-stage
方法
Transfer Connection Block
没什么新的东西,上采样用了deconv,conv-relu,element-wise add
Two-Step Cascaded Regression
- fisrt step ARM prediction
- for each cell,for each predefined anchor boxes,predict 4 offsets and 2 scores
- obtain refined anchor boxes
- second step ODM prediction
- with justified feature map,with refined anchor boxes
- generate accurate boxes offset to refined boxes and multi-class scores,c+4
- fisrt step ARM prediction
Negative Anchor Filtering
- reject well-classified negative anchors
- if the negative confidence is larger than 0.99,discard it in training the ODM
- ODM接收所有pred positive和hard negative
Training and Inference details
- back:VGG16 & resnet101
- fc6 & fc7变成两个conv
- different feature scales
- L2 norm
- two extra convolution layers and one extra residual block
- 4 feature strides
- each level:1 scale & 3 ratios
- ensures that different scales of anchors have the same tiling density on the image
- matching
- 每个GT box match一个score最高的anchor box
- 为每个anchor box找到最匹配的iou大于0.5的gt box
- 相当于把ignore那部分也作为正样本了
- Hard Negative Mining
- select negative anchor boxes with top loss values
- n & p ratio:3:1
- Loss Function
- ARM loss
- binary class:只计算正样本???
- box:只计算正样本
- ODM loss
- pass the refined anchors with the negative confidence less than the threshold
- multi-class:计算均衡的正负样本
- box:只计算正样本
- 正样本数为0的时候,loss均为0:纯阴性样本无效??
- ARM loss
- back:VGG16 & resnet101