refineDet

和refineNet没有任何关系

RefineDet: Single-Shot Refinement Neural Network for Object Detectio

  1. 动机

    • inherit the merits of both two-stage and one-stage:accuracy and efficiency
    • single-shot
    • multi-task
    • refineDet
      • anchor refinement module (ARM)
      • object detection module (ODM)
      • transfer connection block (TCB)
  2. 论点

    • three advantages that two-stage superior than one-stage
      • RPN:handle class imbalance
      • two step regress:coarse to refine
      • two stage feature:RPN任务和regression任务有各自的feature
    • 模拟二阶段检测的RPN,把classifier任务中的大量阴性框先排掉,但不是以两个阶段的形式,而是multi-task并行
    • 将一阶段检测的objectness和box regression任务解耦,两个任务通过transfer block连接
    • ARM
      • remove negative anchors to reduce search space for the classifier
      • coarsely adjust the locations and sizes of anchors to provide better initialization for regression
    • ODM
      • further improve the regression
      • predict multi labels
    • TCB

      • transfer the features in the ARM to handle the more challenging tasks in the ODM

  3. 方法

    • Transfer Connection Block

      • 没什么新的东西,上采样用了deconv,conv-relu,element-wise add

    • Two-Step Cascaded Regression

      • fisrt step ARM prediction
        • for each cell,for each predefined anchor boxes,predict 4 offsets and 2 scores
        • obtain refined anchor boxes
      • second step ODM prediction
        • with justified feature map,with refined anchor boxes
        • generate accurate boxes offset to refined boxes and multi-class scores,c+4
    • Negative Anchor Filtering

      • reject well-classified negative anchors
      • if the negative confidence is larger than 0.99,discard it in training the ODM
      • ODM接收所有pred positive和hard negative
    • Training and Inference details

      • back:VGG16 & resnet101
        • fc6 & fc7变成两个conv
        • different feature scales
        • L2 norm
        • two extra convolution layers and one extra residual block
      • 4 feature strides
        • each level:1 scale & 3 ratios
        • ensures that different scales of anchors have the same tiling density on the image
      • matching
        • 每个GT box match一个score最高的anchor box
        • 为每个anchor box找到最匹配的iou大于0.5的gt box
        • 相当于把ignore那部分也作为正样本了
      • Hard Negative Mining
        • select negative anchor boxes with top loss values
        • n & p ratio:3:1
      • Loss Function
        • ARM loss
          • binary class:只计算正样本???
          • box:只计算正样本
        • ODM loss
          • pass the refined anchors with the negative confidence less than the threshold
          • multi-class:计算均衡的正负样本
          • box:只计算正样本
        • 正样本数为0的时候,loss均为0:纯阴性样本无效??